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Abstract: The non-invasive, in vivo measurement of microvascular blood flow has the potential
to enhance breast cancer therapy monitoring. Here, longitudinal blood flow of 4T1 murine breast
cancer (N=125) under chemotherapy was quantified with diffuse correlation spectroscopy based
on layer models. Six different treatment regimens involving doxorubicin, cyclophosphamide,
and paclitaxel at clinically relevant doses were investigated. Treatments with cyclophosphamide
increased blood flow as early as 3 days after administration, whereas paclitaxel induced a
transient blood flow decrease at 1 day after administration. Early blood flow changes correlated
strongly with the treatment outcome and distinguished treated from untreated mice individually
for effective treatments.
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1. Introduction

Patients with locally advanced breast cancer generally receive neoadjuvant chemotherapy
(NAC) to shrink breast tumors prior to surgical removal. However, up to 20% of these patients
do not respond to this therapy [1, 2]. Due to the lack of reliable methods to monitor and
predict therapeutic efficacy at an early stage in the course of treatment, these non-responders
suffer from unnecessary side effects of ineffective treatments and may lose opportunities for
alternative treatments. Current NAC response estimation methods such as clinical palpation,
mammography, and ultrasonography are based on morphological changes and are inaccurate for
prediction of therapeutic efficacy [3, 4]. Several research studies employing positron emission
tomography (PET) and/or dynamic contrast enhanced magnetic resonance imaging (DCE-MRI)
have demonstrated that metabolic and physiological changes, as early as 24 hours after the initial
NAC cycle, correlate well with pathological or clinical responses [5]. However, it is difficult to
employ PET and DCE-MRI as imaging modalities for frequent longitudinal monitoring due to
the high cost and the requirement of contrast agent injection.

Diffuse optical methods are non-invasive techniques suitable for frequent longitudinal
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monitoring of functional parameters because they do not use ionizing radiation or contrast agent
injection, and are inexpensive [4]. In particular, diffuse optical spectroscopy and tomography
measure total hemoglobin concentration, tissue blood oxygenation, water, lipid concentrations
and tissue scattering. Diffuse correlation spectroscopy and tomography measure microvascular
blood flow information.

Several studies on human subjects have demonstrated that diffuse optical spectroscopy and
tomography are sensitive to changes induced by breast cancer therapies and have the potential
to predict therapeutic efficacy [4, 6–24]. In particular, the decrease of breast cancer total
hemoglobin concentration in good responders was consistently observed in most studies at least
one month after the initial administration of therapeutic treatments [4], in line with changes in
angiogenesis [18]. In terms of early responses, Roblyer et al. [19] noted a significant transient
increase (flare) of oxygenated hemoglobin concentration in responders one day after the initial
chemotherapy administration regardless of the type of therapy (e.g., cytotoxic with or without
bevacizumab or trastuzumab). This flare was speculated to be due to perfusion changes by an
acute inflammatory response induced by cell damage and death, but was not confirmed since
the authors did not have direct access to blood flow information.

Blood flow affects the sensitivity of cancer cells to various therapies and is directly related
to the systemic delivery of therapeutic drugs [25–27]. In addition, blood flow changes in breast
cancer patients undergoing NAC, measured with 15O-water PET, were shown to predict disease-
free-survival and overall-survival in human subjects [28]. A few clinical case studies suggested
that blood flow flare quantified with diffuse correlation spectroscopy (DCS) may be related to
better outcome for breast cancer undergoing chemotherapy [4, 13] and head and neck cancer
undergoing radiation therapy [29].

Since these DCS studies were based on a small number of subjects (N < 10), it is still unclear
whether the blood flow flare is a universal indicator of favorable response to different types of
cancer therapies. Furthermore, the earliest time point that blood flow changes can be utilized to
reliably predict the treatment efficacy has not been identified. A preclinical model can provide an
alternative method to systematically investigate the effects of different chemotherapeutic drugs
on hemodynamic parameters at a faster pace than clinical trials. Here, we have investigated
the longitudinal effect of commonly used NAC drugs on blood flow quantified with diffuse
correlation spectroscopy using 125 murine breast tumors. In particular, six treatment regimens
were carefully designed to investigate the individual or combinatorial effect of doxorubicin,
cyclophosphamide, and paclitaxel, based on the clinically equivalent dose and the median lethal
dose for mice. To improve the accuracy of blood flow, a layer-model based multi-distance DCS
data analysis algorithm was developed to account for scab formation in the 4T1 tumors. After
quantification of tumor blood flow, a linear mixed effects model was utilized for statistical
analysis of longitudinal data. In effective treatments, early changes in relative tumor blood
flow correlated well with the treatment outcome (i.e., tumor size changes). Furthermore, the
feasibility of utilizing blood flow changes at early time points to predict individual response to
cancer treatments was demonstrated.

2. Methods

2.1. Diffuse correlation spectroscopy instrument

This study utilized a diffuse correlation spectroscopy (DCS) system with a 785 nm long
coherence laser (DL785-120-SO, CrystaLaser, Reno, NV), and a detection unit consisting of
a four-channel photon-counting avalanche photodetector (SPCM-AQ4C, Excelitas, Waltham,
MA) and a four-channel hardware correlator board (Flex03OEM, Correlator.com, Bridgewater,
NJ). The correlator board calculates the normalized intensity temporal autocorrelation function
g2(r, τ) = 〈I (r, t)I (r, t + τ)〉/〈I (r, t)〉2 where I (r, t) is the intensity measured with the de-
tector at position r and time t, τ is the correlation delay time, and 〈 〉 denotes ensemble average.
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A custom-made probe (Fiberoptic Systems, Inc., Simi Valley, CA) contained one multi-mode
fiber with 200 μm diameter for the source and four single-mode fibers with 5.6 μm mode
field diameter for detectors as shown in Fig. 1. Source-detector separations were 2.55, 2.89,
3.25 and 3.94 mm. The mean maximum penetration depths reached by photons migrating in
homogeneous medium of μa = 0.1 cm−1 and μ′s = 10 cm−1 at these separations are 1.2 - 3.2
mm [30]. These depths are well above the thickness of murine epidermis and dermis, which is
10 μm and 250 μm respectively [31]. The probe was connected to a micromanipulator with fine
control over vertical movement, which, in turn, was connected to a post mounted on a linear
translational stage, enabling horizontal movement.

Fig. 1. Diagram of diffuse correlation spectroscopy and probe placement on a murine
breast tumor in the mammary fat-pad. After the mouse was anesthetized with isoflurane,
a custom-made probe was placed on the center of the tumor. A micromanipulator and a
linear translational stage attached to the probe were utilized to enable placement of the
probe on the same location within the tumor each day. A multi-mode optical fiber in the
probe delivered near-infrared light from a 785 nm long coherence laser to the tumor surface.
Light signals detected at four single-mode optical fibers placed 2.55, 2.89, 3.25 and 3.94
mm away from the source fiber were relayed to photon-counting avalanche photodiodes
(APDs). Normalized temporal intensity autocorrelation functions of the detected light were
calculated by an autocorrelator board and passed onto the computer.

2.2. Animal model and DCS measurement protocol

All experimental protocols were approved by the University Committee on Animal Resources
(UCAR) of the University of Rochester. 5-6 week old female BALB/cByJ mice (Jackson
Laboratory, Bar Harbor, Maine) were used for this study. Each mouse was injected with
the 4T1 murine breast cancer cell line in a mammary fat-pad at a concentration of 1×105

cells/100 μL. The 4T1 cancer cell line is syngeneic, originally derived from the corresponding
immunocompetent mouse strain (BALB/c) [32, 33].

After the tumor cells were inoculated, the tumor size was measured with a digital caliper on
a daily basis. The size was then assessed in terms of area based on the formula πab/4, where
a and b were the horizontal width and the vertical length, respectively. When the tumor area
reached approximately 30 - 35 mm2 (i.e., an effective diameter of 6 - 7 mm), the in vivo mouse
experiment using a DCS instrument was initiated. On the first day (Day 0) of the experiment the
baseline DCS signals were measured at the center of the tumor under inhalation anesthesia with
isoflurane. Isoflurane was chosen mainly for its minimal interference with microcirculation, in
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addition to its fast anesthetic effect and reliability [34–36]. Each DCS measurement comprised
of the acquisition of thirty sequential autocorrelation functions with 2 second integration time.
Measurements were repeated three times at the same location by lifting the probe up and down
on the tissue.

After the baseline measurements, intraperitoneal injection of a chemotherapeutic drug
dissolved in 200 μL of solvent was given to the mice belonging to the treatment group. For
the control group, 200 μL of solvent without any drug was administered. Dulbecco’s Phosphate
Buffered Saline (DPBS, 21-030-CV, Corning Cellgro) was utilized as the main solvent to
maintain physiological pH, unless the drug was water-insoluble. DCS measurements were
repeated on days 1, 3, 5, 7, 9, and 11 after the injection.

2.3. Design of clinically motivated chemotherapeutic treatment regimens

In Table 1, chemotherapeutic drug, dose and number of mice for each treatment group are
described. Tumor size and DCS measurements were performed in six different treatment
groups and one control group. The treatment groups were designed to reflect the dosage of the
clinically utilized chemotherapeutic agents. In particular, three chemotherapeutic drugs used for
neoadjuvant breast cancer chemotherapy in the clinic were chosen: doxorubicin (brand name:
Adriamycin), cyclophosphamide, and paclitaxel (brand name: Taxol). The current study design
was based on one of commonly utilized treatment schema for neoadjuvant chemotherapy: 4
cycles of doxorubicin (60 mg/m2) and cyclophosphamide (600 mg/m2) followed by 4 cycles
of taxane (either paclitaxel 175 mg/m2 or docetaxel 100 mg/m2) [37–39]. Initially, experiments
involving the control group and treatment group 3 and 4 were performed with more than 25 mice
per group. Based on the data from these experiments, the minimum number of mice to detect
equivalent changes at day 7 was determined to be 10 mice per group. When the study design
was expanded to include other treatment groups, 10 mice per group were utilized to explore
the responses to different treatments while conserving resources. Treatment group 5 started out
with 10 mice, but two mice were excluded due to unusually slow tumor growth from abnormal
tumor cell injection.

Table 1. Treatment and control group information. Treatment group received 200 μL
solution of chemotherapeutic drug of the listed dose, whereas control group received 200
μL of DPBS. NA: Not applicable.

Group Drug Dose (mg/kg) # of mice
Treatment group 1 doxorubicin 10 10
Treatment group 2 cyclophosphamide 100 10
Treatment group 3 doxorubicin & 10 25

cyclophosphamide 100
Treatment group 4 cyclophosphamide 200 26
Treatment group 5 paclitaxel 40 8
Treatment group 6 paclitaxel 60 10
Control NA NA 36
TOTAL 125

Doxorubicin is an anthracycline antibiotic with two proposed mechanisms of action: (1)
intercalation into DNA and disruption of DNA repair by topoisomerase II, and (2) generation
of free radicals that damage cellular membranes, proteins, and DNA [40]. Cyclophosphamide
is a cytotoxic anticancer agent that works by interfering with DNA replication [41]. Clinically,
these two drugs are typically administered concurrently to breast cancer patients undergoing
chemotherapy as a part of an Adriamycin-Cyclophosphamide (AC) cocktail [38]. Paclitaxel is
a taxane that facilitates the formation of stable tubulin bundles by binding to microtubules and
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disrupting their assembly and disassembly [42]. The cell cycle is halted between metaphase and
anaphase and, thus, cell proliferation is inhibited.

To translate the clinical dose to animals, the body surface area normalization method is
required, instead of simple conversion based on body weight [43]. For mice, the equivalent
doses accounting for this normalization are 20 mg/kg, 200 mg/kg and 58 mg/kg for doxorubicin,
cyclophosphamide and paclitaxel, respectively. However, the LD50 (median lethal dose), the
amount needed to kill 50% of the test population, for intraperitoneal injection in mice is
11.16 mg/kg, 250 mg/kg and 120 mg/kg for doxorubicin, cyclophosphamide, and paclitaxel,
respectively. Since the intraperitoneal doxorubicin LD50 for mice is low, the drug administration
scheme involving doxorubicin was scaled to half of the equivalent dose (i.e., 10 mg/kg). For
treatment group 1 and 3, although the doxorubicin dose was near LD50, most mice survived up
to 2 weeks after drug administration.

Since cyclophosphamide is water soluble, it was dissolved directly in DPBS. Doxorubicin
was dissolved in dimethyl sulfoxide (DMSO) first, then mixed with DPBS. DMSO
concentration was less than 5% of the solution. For paclitaxel, since it is water insoluble, the
powder was dissolved in anhydrous ethanol first, then polyethoxylated castor oil (trade name:
Kolliphor EL) was added. Kolliphor EL acts as an emulsifier to improve delivery of paclitaxel.
Finally, DPBS was added. The ratio among anhydrous ethanol:Kolliphor EL:DPBS was 1:1:8.

Treatment group 1 and 2 were designed to investigate the effect of doxorubicin and
cyclophosphamide as a single agent, whereas group 3 was designed for the effect of
combining two drugs, simulating the cocktail strategy commonly employed in the clinic.
Note that the ratio between two drugs were kept the same as that of the clinical dose
(doxorubicin:cyclophosphamide = 1:10) [37, 39]. Treatment group 4 was for investigating the
effect of increasing cyclophosphamide to the clinically equivalent dose for the mouse. The effect
of paclitaxel was explored through treatment group 5 and 6. Group 6 received 60 mg/kg of
paclitaxel, which was the clinically equivalent dose for the mouse, whereas group 5 received 40
mg/kg of paclitaxel, much less than the equivalent dose.

3. Data analysis

3.1. Analytic solution for a homogeneous semi-infinite medium

The correlation diffusion equation [44] describes the propagation of the electric field temporal
autocorrelation function, G1(r, τ) where r is the position and τ is the correlation delay time.
The analytic solution of the correlation diffusion equation for a homogeneous medium in semi-
infinite geometry (denoted as one-layer medium hereafter) at the tissue boundary (i.e., axial
position z = 0) is

G1(ρ, τ) =
vS0

4πD

[
exp (−K (τ)r1)

r1
− exp (−K (τ)r2)

r2

]
(1)

where K (τ) = [(ν/D)
(
μa + 2τμ′s κ20BFI

)
]1/2 (2)

Here ρ is the source-detector separation, ν is the speed of light in the medium, S0 is the
light source term, D � ν/(3μ′s ) is the light diffusion coefficient, μ′s is the reduced scattering
coefficient, μa is the absorption coefficient, r1 = [z2

0 + ρ
2]1/2, r2 = [(z0 + 2zb )2 + ρ2]1/2,

z0 = 1/μ′s is the transport mean-free path, zb = 2(1 + Re f f )/(3μ′s (1 − Re f f )) satisfies the
extrapolated zero boundary condition and Re f f � −1.440n−2 + 0.710n−1 + 0.668 + 0.0636n
is the effective reflection coefficient, and n is the refractive index ratio between the tissue and
the air, κ0 is the light wavevector in the medium, and BFI is the blood flow index based on the
Brownian model.

In practice, the normalized intensity temporal autocorrelation function g2 is measured instead
of G1 [44]. The Siegert relation [45], g2(r, τ) = 1 + β |g1(r, τ) |2, links these two functions.

                                                                             Vol. 7, No. 9 | 1 Sep 2016 | BIOMEDICAL OPTICS EXPRESS 3617 



(Note that g1(r, τ) = G1(r, τ)/G1(r, 0) is the normalized electric field temporal autocorrelation
function.) In this relation β is a parameter that depends on the system characteristics such as
source coherence, detection optics, and external factors (e.g., ambient light).

(a) One-layer model (b) Two-layer model

S D D D D S D D D D

Layer 2

Layer 1

Fig. 2. Schematic of (a) a homogeneous semi-infinite medium (one-layer model), and (b) a
semi-infinite two-layer medium (two-layer model) with a source (S) and four detectors (D)
on the tissue surface (z = 0).

3.2. Analytic solution for a semi-infinite two-layer medium

For a turbid medium consisting of two layers, where the first layer has thickness L and the
second layer is semi-infinite, the analytical solution for z = 0 , as provided by Gagnon et
al. [46] and derived by Kienle et al. [47, 48], is

G(1)
1 (ρ, τ) =

S0

2π

∫ ∞

0
G̃(1)

1 (s, τ)sJ0(sρ)ds, (3)

where (1) signifies the first layer, G̃(1)
1 is the inverse Fourier transform of G(1)

1 , s is the radial
frequency, and J0 is the Bessel function of zeroth order.

G̃(1)
1 (s, τ) =

v sinh[A1(zb + z0)]
D1 A1

D1 A1 cosh(A1L) + D2 A2 sinh(A1L)
D1 A1 cosh[A1(L + zb )] + D2 A2 sinh[(A1(L + zb )]

− v sinh(A1z0)
D1 A1

,

(4)

where, A2
j
= (D j s2 + vμa , j + 2vτμ′

s , j κ
2
0BFI j )/D j for layer j. Here, μa , j are the absorption

coefficients, μ′
s , j are the reduced scattering coefficients, D j � v/(3μ′

s , j ) is the light diffusion
coefficient, BFI j is the blood flow index for the first layer ( j = 1) and for the second layer
( j = 2). To prevent the introduction of significant computational errors [48], the hyperbolic
functions are typically converted to their corresponding exponential forms. Finally, the Hankel
Transform in Eq. (3) is then numerically solved using a Gauss-Laguerre quadrature [49].

3.3. Multi-distance, hybrid algorithm based on layer models to extract blood flow index

During the monitoring period, we observed frequent formation of a scab on the surface of the
4T1 tumor, especially towards the later part of the monitoring period. This was in line with the
characteristics of 4T1 tumors: ∼ 70% of tumors display ulcerations of the skin [32]. The pres-
ence of the scab affects the measured g2 such that the analytic solution for a homogeneous semi-
infinite medium (i.e., one-layer model) does not fit satisfactorily, due to significantly reduced
blood flow within the scab. Figure 3 shows an example of such cases: satisfactory fit was
achieved with the one-layer model for measured g2 at day 0 without scab (Fig. 3(a)) whereas
the fit was unsatisfactory for measured g2 at day 11 with a scab (Fig. 3(b)). On the other hand,
the two-layer analytic solution [46] assigning the scab as the top layer (layer 1) and the tumor as
the bottom layer (layer 2) resulted in a good fit for g2 at day 11 (Fig. 3(c)). Therefore, a hybrid
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(a) Day 0 (Baseline)

(b) Day 11

One-layer model

One-layer model

Two-layer model

L

S D D D D

SD1 = 2.5 mm SD4 = 3.9 mm

(c) Day 11

Fig. 3. Example of in vivo DCS data from a mouse tumor in the control group at different
time points and varying quality of fits. Black circle is the measured data and the red line is
the fitted curve from multi-distance fitting of the analytic solution to different layer models.
Only data from source-detector separations 2.5 and 3.9 mm are shown for clarity. The
quality of one-layer model fit is good for (a) DCS measurements at day 0 (BFI = 1.38 ×
10−8 cm2/s), but poor for (b) DCS measurements at day 11 (BFI = 2.03 × 10−9 cm2/s).
Two-layer model provides a good fit for (c) DCS measurements at day 11 (BFI1 = 3.34 ×
10−10 cm2/s, BFI2 = 9.21 × 10−9 cm2/s with L = 0.17 cm). S: source, D: detector.

algorithm was developed to accurately quantify the blood flow index of the tumor by separating
the signal contribution from scabs using one- or two-layer models. The complete algorithm is
shown in Fig. 4 and details of the algorithm are described in the following.

To further improve the fitting fidelity, a multi-distance fitting technique for DCS [50]
was adapted for the one-layer and the two-layer solution fit. Typically, blood flow index is
quantified from a measurement from a single source-detector pair. However, Farzam et al. [50]
demonstrated that an objective function combining measurements from multiple source-detector
pairs (i.e., multi-distance measurements) is superior to that with a single source-detector pair in
terms of retrieval of stable BFI values. This multi-distance approach improves the convergence
of the algorithm by confining the minimum of the objective function to a smaller area in
parameter space (i.e., less parameter crosstalk). The multi-distance objective function [50] was
defined as

χ2 =

Nsd∑
i

Nτ∑
j

| |g2,m (ri , τj ) − (1 + βi |g1,c (ri , τj ) |2) | |, (5)

where Nsd is the total number of source-detector separations, Nτ is the total number of τ values,
g2,m is the measured g2 and g1,c is the calculated g1 based on a layer model.

For the two-layer case, there were eleven unknowns for our measurements: μa ,1, μa ,2, μ′
s ,1,
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Fig. 4. Flow chart for hybrid algorithm based on layer models to separate the effect of scab
on tumor blood flow quantification.

μ′
s ,2, BFI1, BFI2, L, and one β for each detector. β for each detector was estimated from

the experimental data at short τ (∼ 10−7 sec) based on the Siegert relation. To reduce the
number of parameters, the optical properties were assumed to be μa ,1 = μa ,2 = 0.10 cm−1,
μ′
s ,1 = μ

′
s ,2 = 8.0 cm−1 [51–53]. (Note that these optical properties do not alter the relative

blood flow trend as long as consistent values are used. See Section 5.3 for further discussion.)
Even with this reduction of unknown parameters, the simultaneous retrieval of three parameters
was not stable against the variation of initial guesses. This sensitivity to initial guesses for
fitting the layer thickness and optical properties was observed in the multi-layer model [47].
To overcome this instability, a two-step fitting process has been developed (Fig. 4). First, L was
fitted under the assumption that BFI1 and BFI2 were 10−10 cm2/s, and 10−8 cm2/s, respectively.
BFI of 10−8 cm2/s is the typical order of magnitude found from DCS measurements on in vivo
tissues without scabs, whereas 10−10 cm2/s corresponds to the average BFI from large scabs
(> 3 mm thick) using the semi-infinite analytical solution at source-detector separation of 2.55
mm. The constrained Nelder-Mead simplex optimization method, which is an iterative fitting
method, was utilized for fitting L using MATLAB. The BFI1 and BFI2 were then fitted by
fixing the L from the previous step using the same optimization method. The stopping criterion
was set such that the difference between the current and the previous χ2 is less than 10−6. Note
that thirty consecutively acquired g2 curves were averaged and used as g2,m to minimize noise
in the signal.

In many cases, the fitted BFI1 was smaller than BFI2 as expected from the scab. For cases
with the larger fitted BFI1 compared to BFI2, the data could be successfully fitted with a one-
layer solution. These cases usually corresponded to the data from murine tumors with no or little
scabs, measured at earlier monitoring time points (most notably at the baseline point). Thus, we
utilized this behavior (i.e., BFI1 > BFI2) as a condition to determine whether to change the
analysis to use a one-layer model (i.e., semi-infinite solution) or retain BFI2 from the two-layer
model as tumor blood flow.
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For each mouse at each day of measurement, the BFI (one-layer model) or BFI2 (two-layer
model) values from the three repeated measurements were averaged. Then, the relative blood
flow (rBF) of each mouse was computed by normalizing blood flow index with respect to the
first time point (i.e., Day 0): for example, rBF (t) = BFI (t)/BFI (tDay0) for the one-layer
model, where t is the time point. The relative tumor area (rT A) was also calculated in the same
fashion: rT A(t) = T A(t)/T A(tDay0).

3.4. Statistical analysis

Statistical analysis of data was performed using MATLAB and R. First, student’s t-test for
data with a normal distribution or Wilcoxon rank-sum test for data with a non-normal dis-
tribution was utilized to compare rT A or rBF at each time point between the control and
the treatment group, as a quick preliminary assessment. In particular, this method was useful
in identifying potential candidates for time points that showed promise for early detection of
efficacy. Although this simple method can be beneficial for a quick look at the trend, it does not
take into account the longitudinal nature of our dataset.

Therefore, a linear mixed effects model [54] was employed to determine if the longitudinal
responses from different treatment groups were statistically different from the control group.
The mean response is modeled as a combination of population characteristics common to all
individuals (fixed effects) and subject-specific effects unique to a particular individual (random
effects) in a mixed effects model [55].

For our case, the expression of the response variable based on the linear mixed effects model
was described as

Yi , j ,m = β0,0 + β1,0 × ti , j +
M∑
q=1

(δqm × β1,q × ti , j ) + b1,i × ti , j + ε (6)

where Yi , j ,m is the response of the ith individual, at the j th time point of the mth treatment group,
β0,0 and β1,0 are the fixed effect terms for the control group (intercept and slope, respectively),
M is the total number of treatment groups, δqm is the Kronecker delta (δqm = 0 if q � m, δqm
= 1 if q = m), β1,q is the fixed effect term (slope) for the treatment groups, and b1,i is the
individual random effects term (slope) of the ith subject, and ε is the observation error. The
comparison between the control group and the treatment groups was facilitated by separating
the fixed effects into different groups, with the control group as the reference.

For the control group, this equation reduces to Yi , j ,0 = β0,0 + β1,0 × ti , j + b1,i × ti , j + ε . For
mth treatment group, this reduces to Yi , j ,m = β0,0 + (β1,0 + β1,m ) × ti , j + b1,i × ti , j + ε . To
achieve approximate normality of the response variable Yi , j ,m , measured quantities of interest
(i.e., relative tumor area or relative blood flow) were log-transformed and assigned as Yi , j ,m .
Note that there is an intercept term only in the fixed effect of the reference group, since our
variable of interest (rT A and rBF) starts from 1 at Day 0, thus resulting in no intercept in
random effects. Equation 6 is further formulated such that the β1,m term is a direct comparison
between the slopes of the control and treatment group m, and the significance of treatment m is
readily available from the p-value of the regression coefficient itself. A Wald test is then utilized
to test the null hypotheses that β1,m = 0. The regression parameters are considered statistically
different from those of the control group if p < 0.05/Mc , where Mc is the total number of
comparisons within each comparison cohort. This significance level was chosen in accordance
with Bonferroni correction for multiple comparisons. For example, for the cohort of treatment
groups involving doxorubicin and/or cyclophosphamide, responses from 4 different groups were
compared with those from the control group. Therefore, β1,m with p < 0.0125 is deemed to
be significantly different from the slope of control group (i.e., β1,0). Similarly, p < 0.025 is
deemed statistically significant for the cohort of treatment groups involving different doses of
paclitaxel since Mc = 2 in this case.
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To demonstrate the correlation between blood flow and tumor response estimated by tumor
area, a linear regression was performed by assigning group-averaged rBF for the horizontal
axis and group-averaged relative tumor area rT A for the vertical axis at a given time point for
the control and doxorubicin and/or cyclophosphamide cohort (i.e., treatment group 1-4).

Lastly, a receiver operating characteristic (ROC) curve was constructed to assess the
feasibility of using blood flow at early time points to distinguish between treated and untreated
mice. First, a treatment group of interest and a control group were pooled together. The predicted
positive response was defined as rBF above the threshold (especially for cyclophosphamide-
based treatments), and vice versa for predicted negative response. Actual positive and negative
response was defined as belonging to the treatment group and the untreated control group,
respectively. Then the sensitivity (true positive rate) was calculated by taking a ratio between the
number of treated mice showing predicted positive response (i.e., true positive) and the number
of all treated mice. Sensitivity here is the measure of the ability to correctly identify individual
mice that belong to the treated group. The false positive rate (equivalent to 1 - specificity) was
calculated as the ratio between the number of control mice with predicted positive response
and the number of all mice in the control group. Then, the area under the curve (AUC) was
calculated as a measure of discrimination between treated and untreated mice to the specific
treatment.

4. Results

4.1. Baseline tumor area and blood flow

Due to the inter-subject variation in the tumor growth rate, the tumor area at the baseline
measurements for individual mice were not uniform. In fact, both tumor area and BFI of 125
mice had a unimodal distribution with positive skew, which approximated to a normal distribu-
tion after a log transformation. The 95% confidence intervals for tumor area and BFI were
29.0 - 34.3 mm2 and 0.99×10−8 - 1.11×10−8 cm2/s, respectively. In order to normalize the
intersubject variation, the ratios between subsequent time points and the baseline time point for
tumor area and blood flow index were quantified.

4.2. Longitudinal blood flow and tumor size trends under different chemotherapeutic
drugs

Figure 5 shows group-averaged longitudinal changes of relative tumor area and relative blood
flow after a single dose of doxorubicin and/or cyclophosphamide. For clarity of presentation, the
group-averaged mean value of either relative tumor area or rBF at each time point are presented
for the control group (filled black circle, solid line) and for one treatment group (red asterisk,
dotted line) per figure. The error bar in the figure is the standard error of the mean, reflecting
the inter-subject variability. The relative tumor area and rBF trend of the group treated with 10
mg/kg of doxorubicin (N=10) was not different from those of control group (N=36) as seen in
Fig. 5(a) and 5(b). For almost every time point, there was no statistically significant difference
between control and doxorubicin-only groups in terms of relative tumor area and rBF when
student’s t-test or Wilcoxon rank-sum test was used. On the other hand, the treatment group
with 100 mg/kg cyclophosphamide (N=10) showed delayed tumor growth and higher blood
flow than the control group (Fig. 5(c) and 5(d)). The relative tumor area difference between the
100 mg/kg cyclophosphamide group and the control group became significant as soon as day 2
and rBF differences were significant on days 5, 7, and 9.

Although doxorubicin alone did not result in tumor growth delay, the combination of
doxorubicin and cyclophosphamide (N=25) resulted in a more dramatic tumor delay and higher
blood flow being sustained even more than 7 days after injection (Fig. 5(e) and 5(f)). In Fig. 5(g)
and 5(h), delayed tumor growth and elevated blood flow similar to those with AC treatment were
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(a) (b)

(c) (d)

(e) (f)

(g) (h)Treatment 4:
Cyclophosphamide
(200 mg/kg)

Treatment 3:
Doxorubicin +
Cyclophosphamide
(10; 100 mg/kg)

Treatment 2:
Cyclophosphamide
(100 mg/kg)

Treatment 1:
Doxorubicin
(10 mg/kg)

Fig. 5. Group-averaged temporal changes in relative tumor area, rT A (left column) and
relative blood flow, rBF (right column) are compared between the control group (filled
black circle, solid line) and the treatment group (red star, dotted line). N refers to the
number of animals per group. Error bars are derived from the standard error of the mean
of each group at each measurement time point. Blue vertical line indicates the time when
treatment drug or control vehicle was injected. Blue star indicates statistically significant
difference between each treatment and control group based on two-sample test (p < 0.05).

observed for the group that received 200 mg/kg cyclophosphamide (N=26), which was double
the dose compared to treatment 2. In these two treatment groups, relative tumor area difference
between the treatment and the control group became significant as soon as day 2 and rBF
starting day 3.

The group-averaged longitudinal trends of paclitaxel at different doses are presented in Fig.
6. As seen in Fig. 6(a) and 6(b), relative tumor area and rBF trend of the group treated with
40 mg/kg of paclitaxel (N=8) was not different from those of control group (N=36). The group
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(a) (b)

(c) (d)

Treatment 5:
Paclitaxel
(40 mg/kg)

Treatment 6:
Paclitaxel
(60 mg/kg)

Fig. 6. Group-averaged temporal changes in relative tumor area, rT A (left column) and
relative blood flow, rBF (right column) are compared between the control group (filled
black circle, solid line) and the treatment group (red star, dotted line). Top and bottom
figures are from the group with 40 mg/kg paclitaxel (Taxol) and from the group with 60
mg/kg paclitaxel treatment, respectively. N refers to the number of animals per group. Error
bars are derived from the standard error of the mean of each group at each measurement
time point. Blue vertical line indicates the time when treatment drug or control vehicle was
injected. Blue star indicates statistically significant difference between each treatment and
control group based on two-sample test (p < 0.05).

treated with 60 mg/kg of paclitaxel exhibited reduction of relative tumor area on day 1, which
persisted in later days (Fig. 6(c)). However, the slope of relative tumor area growth after day 3
was the same as that of the control group. The relative blood flow of the 60 mg/kg paclitaxel
group decreased drastically on day 1 compared to that of control group, but was similar in other
time points (Fig. 6(d)). In terms of time points, there was no statistically significant difference
between control and the lower-dose paclitaxel group, whereas the higher-dose paclitaxel group
showed significant differences on day 1 after the treatment in both relative tumor area and rBF.

4.3. Statistical difference between treatment group and control group based on linear
mixed effects model

Table 2 summarizes the results from the linear mixed effects model. Note that treatment groups
are further divided into two different cohorts: one cohort involving either doxorubicin and/or
cyclophosphamide (group 1 - 4) and the other cohort with paclitaxel (group 5 - 6). In particular,
p-values associated with the slope difference between the treatment and the control group (β1,m)
for relative tumor area and rBF are presented. For the first cohort (group 1 - 4), statistically
significant p-value is 0.0125 after Bonferroni correction. Based on this p-value, the doxorubicin-
only group (group 1) was not different from the control group, whereas the combination AC
group (group 3) and the cyclophosphamide 200 mg/kg group (group 4) were significantly
different from the control group in both relative tumor area and rBF. The cyclophosphamide
100 mg/kg group (group 2) exhibited intermediate responses in that relative tumor area was
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Table 2. Linear mixed effects model analysis for relative tumor area and relative blood
flow of different treatment regimens. p-values for β1,m with respect to the control group
are presented. ∗ indicates the statistical significance based on Bonferroni correction for
multiple comparisons. AC: Adriamycin and cyclophosphamide.

Treatment Group relative tumor area relative blood flow
Group 1 (doxorubicin) 0.35 0.46
Group 2 (cyclophosphamide 100 mg/kg) < 0.0001∗ 0.034
Group 3 (AC) < 0.0001∗ < 0.0001∗
Group 4 (cyclophosphamide 200 mg/kg) < 0.0001∗ < 0.0001∗
Group 5 (paclitaxel 40 mg/kg) 0.63 0.57
Group 6 (paclitaxel 60 mg/kg) 0.17 0.11

significantly different from the control group, but rBF, albeit with a relatively low p-value, did
not reach the statistical significance after Bonferonni correction.

On the other hand, the treatment cohorts involving paclitaxel did not demonstrate significant
difference from the control group in both rT A and rBF, with high p-values (Table 2). The high
p-value may be due to similarities in the slope between paclitaxel-based treatments and the
control group, although there seems to be an interesting transient change at day 1 for group 6.

4.4. Correlation between blood flow and tumor size changes in response to
chemotherapy

(a) (b)

Fig. 7. Correlation between treatment outcome (rT A at Day 11) and rBF at (a) Day 3 or
(b) Day 7.

Figure 5 suggests the existence of correlation between the blood flow and the tumor size
responses to effective treatments. Clear linear relationships between group-averaged blood flow
changes at early time points (day 3 or 7) and group-averaged tumor area change at day 11
(i.e., treatment outcome) are presented in Fig. 7 for the treatment cohort involving doxorubicin
and/or cyclophosphamide. Both Fig. 7(a) and 7(b) show high rT A and low rBF for the control
and the ineffective treatment (i.e., doxorubicin-only), and low rT A and high rBF for effective
treatments involving cyclophosphamide. The Pearson’s correlation coefficients were -0.92 (p-
value: 0.028) for day 3 and -0.91 (p < 0.0001) for day 7, showing relatively strong correlation.
Note that we chose to quantify the correlation between rBF at early time points and rT A at day
11 to simulate the clinical situation. Unlike in the animal model, frequent clinical assessment
of accurate tumor size during neoadjuvant chemotherapy is difficult due to fibrosis (X-ray
mammography or ultrasound) [56–59] or high cost (MRI or PET). Thus, it is reasonable to
assume that tumor size information may be available at limited time points (i.e., pre- and post-
therapy) from other imaging modalities such as MRI, whereas blood flow can be accessed
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frequently through non-invasive diffuse correlation measurements.

4.5. Blood flow changes at early time point as the predictor of responses to
chemotherapy

(a) (b)AC [10;100 mg/kg] Cyclo [200 mg/kg]

Fig. 8. (a) ROC curve for distinguishing group with AC combination therapy and control
group based on rBF at day 3 and 7. (b) ROC curve for distinguishing group with
cyclophosphamide 200 mg/kg and control group based on rBF at day 3 and 7.

To determine whether rBF at early time points (e.g., day 3 or 7) can differentiate treated
mice from untreated mice on an individual basis, the ROC curves were constructed. Day 5 was
not considered due to lack of measurements for the cyclophosphamide 200 mg/kg group. Based
on the assessment of linear mixed effects model analysis, the AC combination therapy group
(group 3) and higher-dose cyclophosphamide group (group 4) were selected for generation of
the ROC curves (Fig. 8). AUC of day 7 was better than day 3 for both treatments, but these
AUCs were in similar range (0.72 to 0.83).

5. Discussion

5.1. Significance

In this study, the effects of chemotherapeutic agents on breast cancer blood flow were
systematically quantified using longitudinal in vivo measurements on a mouse model with
diffuse correlation spectroscopy. These measurements demonstrated that the changes in rela-
tive blood flow correlated strongly with the treatment efficacy determined by the changes in the
relative tumor area.

Even though there have been several longitudinal therapy monitoring studies on animal
cancer models with diffuse optical spectroscopy [51,60] and/or diffuse correlation spectroscopy
[61,62], this study has several unique and noteworthy aspects in the study design, data analysis
method, and findings. First, the tumor model based on orthotopically implanted syngeneic
tumors was chosen since it is regarded to be more predictive of responses than ectopic tumors
[63]. The mammary fat-pad provides the natural microenvironment for syngeneic tumors.
In addition, 4T1 mammary carcinoma grows quickly due to its aggressiveness and shares
similarities with human mammary carcinoma especially in terms of metastasis [32]. Second,
to improve the quantification of blood flow during the scab formation accompanied with the
growth of aggressive breast cancer, we developed a DCS fitting algorithm that adapts either one
or two-layer geometry depending on the shape of the correlation function. Here, we combined
the approach to fit DCS measurements from multiple source-detector separations [50] and the
approach based on the two-layer geometry [46, 64], thereby increasing fitting stability and
reducing the discrepancy between measurement and the over-simplified analytical model. Third,
six different treatment schemes were investigated to identify the effect of individual drugs, dose

                                                                             Vol. 7, No. 9 | 1 Sep 2016 | BIOMEDICAL OPTICS EXPRESS 3626 



increases and the combination of two drugs as used in the clinic on blood flow. Many aspects of
these treatment schemes were designed to reflect characteristics of clinical practice as best as
we can within the limitations of the animal model. For example, three commonly used conven-
tional chemotherapeutic drugs for breast cancer were chosen for the study. Their doses for mice
were determined with regards to the clinically equivalent doses and the limitation imposed by
LD50. For combination therapy, the ratio between doxorubicin and cyclophosphamide was kept
the same as that used in the clinic. Lastly, various statistical analysis methods were employed
to shed light on clinically motivated questions. A linear mixed effects model was utilized to
determine whether longitudinal trends of the relative tumor area or the relative blood flow
are statistically different between a certain treatment group and the control group. The ROC
curve was generated to test whether the blood flow changes detected at early time points could
potentially predict individual response to treatments.

5.2. Physiological observations

Multiple factors such as the tumor type, stage, and microenvironment may affect the
hemodynamic changes induced by cancer therapy. Diffuse correlation spectroscopy is a versatile
technique that can provide frequent longitudinal measurements of blood flow responses to
different cancer therapies in both clinical and preclinical settings. For this particular murine
breast cancer model, rBF decreased gradually while the tumor size increased dramatically over
2 weeks in the control group. This decrease in rBF may be due to blood vessel compression
caused by growth-induced solid stress [65, 66]. Note that optical measurements were initiated
after the tumor reached around 6 mm diameter (around 14 days after tumor inoculation). Two
treatment groups showed extremely similar longitudinal trends in relative tumor area and rBF
compared to the control group: the group treated with 10 mg/kg of doxorubicin (Group 1) and
with 40 mg/kg of paclitaxel (Group 5). Both treatments were administered at a dose less than
the clinically equivalent dose. However, mice still exhibited physical symptoms associated with
doxorubicin (e.g., weight loss, diarrhea). The high blood vessel compression within the tumor
may have hindered the effective delivery of doxorubicin to the tumor. This lack of tumor size
difference between the control and the treatment group with 10 mg/kg doxorubicin in the 4T1
tumor model was also observed by Vishwanath et al. [51]. Statistically significant difference
in blood oxygen saturation between the control and the treatment group was notable at day 10
after doxorubicin administration. In our study, a slight increase of rBF in the doxorubicin group
compared to the control group was noted at day 11 after drug administration.

The groups that received treatment regimens involving cyclophosphamide (Group 2-4)
exhibited a significant delay in tumor growth compared to the control group, demonstrating the
effectiveness of cyclophosphamide-based treatments for the 4T1 tumor model. In parallel, these
groups showed prolonged blood flow elevation over time, when compared with the blood flow of
the control group. This elevation may be attributed partly to relief of solid stress through tumor
growth delay and transient blood vessel renormalization observed in various anti-angiogenic
treatments [67].

The combination therapy showed greater effect on tumor size delay and blood flow changes
than the monotherapy with cyclophosphamide, despite the fact that the monotherapy with
doxorubicin did not exhibit any effect. This synergistic enhancement may be due to the blood
flow enhancement from cyclophosphamide leading to better delivery of doxorubicin into the
tumor. In the future, we plan to quantify the doxorubicin delivery by detecting fluorescent sig-
nals in vitro and/or in vivo.

Paclitaxel at the 60mg/kg dose also showed a close correlation between the tumor size
changes and the blood flow changes. However, its effect was transient, lasting only one day
and furthermore exhibited an opposite blood flow change compared to cyclophosphamide-
induced blood flow changes. Possible explanations can be found in inefficient delivery of
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paclitaxel into the tumor and the anti-angiogenic effect of paclitaxel at low dosages. Although
the polyethoxylated castor oil was utilized to improve delivery of water-insoluble paclitaxel,
this formulation was known to increase blood vessel viscosity [68] and cause difficulties in
delivery. For 4T1 tumors at an advanced stage as utilized in this experiment, the amount of
paclitaxel within the tumor may be low enough to induce an anti-angiogenic effect (i.e., killing
of endothelial cells) rather than an anti-cancer effect (i.e., killing of cancer cells). The apoptosis
of endothelial cells from low dose paclitaxel [42,69] may be the reason for acute size and blood
flow decrease. Alternatively, reactive oxygen species generated by paclitaxel [70] may be the
cause of transient vasoconstriction.

5.3. Measurement repeatability and the effect of various assumptions in layer models

In this study, thirty consecutive DCS measurements were acquired at the center of the tumor,
and three sets of such measurements were performed by lifting the probe up and down. The
purpose of the latter measurements was to account for potential variation due to contact-induced
pressure on the tumor. The average coefficient of variation (i.e., ratio of the standard devi-
ation to the mean BFI) due to temporal fluctuations from 30 consecutive measurements and
placement repeatability from 3 sets was 7% and 10%, respectively. Note that these variations
were reduced in our measurements by taking the mean value of several measurements. The
spatial heterogeneity of BFI at the center of the tumor was around 8% with probe displacement
of 1 - 2 mm.

For the data analysis based on the layer models, several assumptions were made in terms
of initial BFIs and optical properties of different layers. The tumor optical properties were
assigned as μa ,2 = 0.1 cm−1 and μ′

s ,2 = 8 cm−1 based on optical properties averaged from
tumor data available from References [51–53]. Due to the lack of data in the literature, the
scab optical properties (μa ,1 and μ′

s ,1) were assumed to be the same as the tumor properties for
computational simplicity. To investigate their effects on the tumor BFI, representative in vivo
datasets were re-analyzed by varying parameters of interest within the physiological range.

First, initially assumed BFI1 and BFI2 were varied in the first part of the two-step fitting
process. The variations in the initial values of BFI1 (1.0×10−11 to 1.0 × 10−9 cm2/s) and
BFI2 (0.5×10−9 to 2.0×10−8 cm2/s) did not change L and the final extracted tumor blood flow
(BFI2) significantly (i.e., less than 3%).

Second, the effect of μa or μ′s of the scab layer (i.e., layer 1) was investigated by varying μa
from 0.1 to 0.3 cm−1 or μ′s from 8 to 20 cm−1, respectively. A wide range of optical properties
was utilized since the scab optical properties were not available in the literature. μa and μ′s
variations resulted in 7% and 10% variation in BFI2. These results indicate that BFI2 is not
affected greatly with the optical property variations in the top layer.

Next, the effect of μa or μ′s of the tumor (i.e., layer 2) was investigated based on variations
observed in animal studies monitoring cancer treatments [51,71]. According to the longitudinal
study comparing doxorubicin-treated and untreated control groups [51], total hemoglobin
concentration and average μ′s were not significantly different between two groups although
blood oxygen saturation was. Interestingly, total hemoglobin concentration increased 1.5 times
the baseline value and average μ′s from 8 to 14 cm−1 after one week post-treatment. The results
from another group [71] did not show an increasing trend of μ′s , but rather a temporal fluctuation
within Δμ′s = 2 cm−1 with no significant difference between treated and untreated control
groups. For the variation of μa of the second layer from 0.1 to 0.15 cm−1, BFI2 varied from
8 - 10%. For the variation of μ′s of the second layer from 8 to 12 cm−1, BFI2 varied from 33 -
50%. The effect of μ′s of the second layer in the quantification of BFI2 was the greatest among
the assumed parameters thus considered.

However, rBF did not change if the assumed optical properties were varied but held constant
over time. Even when we incorporated the increasing temporal trend of μ′s [51] which resulted

                                                                             Vol. 7, No. 9 | 1 Sep 2016 | BIOMEDICAL OPTICS EXPRESS 3628 



in rBF value changes, the difference between rBF of treated groups and the control group was
preserved. In other words, the difference between rBF presented in Fig. 5 is likely to be genuine
and not originated from errors in the optical property assumptions.
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Fig. 9. Group-averaged temporal changes in L from mice in the control group which yielded
two-layer model fit. Error bars are derived from the standard error of the mean at each time
point.

Note that the first layer thickness L was not varied explicitly, since the two-step fitting process
was designed to overcome the sensitivity of the two-layer model on L. Figure 9 shows the
longitudinal trend of averaged fitted L for control mice that followed the two-layer model fit,
in line with the observation of scab size increase with time. In most cases, once the switch
between one-layer model and two-layer model occurred, data followed the two-layer model fit
in the following days. Furthermore, the fitted L was positively correlated with the scab thickness
estimated from cross-sectional photos from a subset of tumors harvested on day 11. However,
the fitted L modestly overestimated the scab thickness which may be due to its sensitivity to
the intermediate layer undergoing transition from the tumor to the scab. Since the transitional
state may produce a two-layer model-like signal even before the scab becomes visible, the
hybrid algorithm was devised to determine the choice of models instead of relying on the visual
observation. In the future, quantitative immunohistological analysis on the extent of scab at
different time points could increase the fidelity of the layer model approach.

5.4. Limitations and future studies

While relatively strong correlation between early blood flow changes and final tumor size
changes was observed for effective treatments, the variations in individual responses were
present, affecting the ROC curve. This may be due to potential shifts in the probed region of
tumor due to non-uniform growth, limitations of the layer model approach to address spatially
heterogeneous formation of scabs, utilization of only a point measurement not accounting
for full heterogeneity of the tumor, and assuming constant optical properties throughout the
monitoring period. In addition, the observed blood flow changes without treatment (i.e., gradual
decrease over time) were opposite to the clinically observed blood flow progression (i.e.,
increase over time for non-responding tumors). The stage difference between the 4T1 model
measured in this experiment (metastasis) [32] and human breast cancers measured in the clinic
(mostly before metastasis) would be the most likely cause of the discrepancy in temporal
blood flow patterns. For this particular measurement, tumors larger than 6 mm in diameter
were measured to ensure contact for measurements at a source-detector separation of 3.94 mm.
This limitation resulted in the lack of blood flow information during the tumor growth prior to
treatment. To address these limitations, a non-contact scanning diffuse correlation tomography
system [72,73] will be adapted for animal cancer monitoring. This will enable measurements of
tumors at any time during their development and provide reliable three-dimensional blood flow
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imaging with spatially dense datasets from the scanning system. Diffuse optical tomography
will be added to the system to provide temporal changes in absorption and scattering coefficients
for individual mice. These coefficients will be employed to improve the blood flow accuracy as
well as to quantify total hemoglobin concentration and blood oxygen saturation.

6. Conclusion

In this work, we have characterized the longitudinal changes in tumor area and tumor blood flow
under various chemotherapy regimens using a 4T1 murine breast cancer model. Relative tumor
blood flow was quantified using a layer-model based algorithm, utilizing DCS measurements
from multiple source-detector separations simultaneously. The differences between effective
and ineffective treatment groups were identified by comparison with the control group using a
linear mixed effects model. For treatments involving cyclophosphamide and doxorubicin, rela-
tive blood flow changes were inversely correlated with relative tumor area changes. In addition,
relative blood flow changes as early as 3 days after cyclophosphamide based treatments
exhibited relatively high AUC for distinguishing treated mice from untreated mice. On the
other hand, paclitaxel based treatments exhibited a transient blood flow decrease at 1 day after
injection which corresponded to tumor area decrease. While the blood flow changes at the early
time point correlate well with the tumor size changes, the blood flow response characteristics
differ depending on the types of therapeutic drugs as well as the physiology of the tumor
model. Diffuse correlation spectroscopy provides means to study these different blood flow
characteristics of cancer treatments in animal models. This is the first step towards building a
predictive model for effectiveness of breast cancer treatment based on blood flow.
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